Skip to main content

Important calibration when loading new 3D printer filament

Note to self: The most important calibration to do when loading new 3D printer filament (even if it's the same brand and type, because the formulation may have changed) is to calibrate the extruder steps/mm (also called E-steps/mm).

Details of this calibration is given here.

The (simplified) steps I take are:

Power up the 3D printer and hook it up to the laptop via a USB cable.

Install and run a program that is able to talk to the 3D printer via the virtual serial port (eg. Prointerface).

Mark 10cm of filament, starting from the hole where the filament enters the extruder stepper mechanism and work backwards. An extra piece of filament that is measured to exactly 10cm helps here.

Use the following G-Code to find out your current E-step value.
M503
The current E-step value is the last value (96.5) on this line:
Steps per unit:
    M92 X80.00 Y80.00 Z400.00 E96.5
Issue the following G-Code:
// Set nozzle temp to 190c. Set to temperature you'd be printing the filament at.
M104 S190

// Relative positioning
M83

// Extrude 100mm at 50mm/s rate
G1 E100 F50 

// Reset extruder's origin
G92 E0
Visually inspect how much over or under extrusion there is. If there is over-extrusion, it helps to make a 11-cm marking to estimate how much over-extrusion there is.

The new E-step value is calculated simply as:
10 / actual-extruded-length * current-e-step
The new E-step value can be saved to firmware using:
M92 E100.9 // 100.9 is the new E-step value
M500 // Persist to firmware
Try again and make sure approximately 10cm of filament is extruded. Some filament requires a higher temperature than the typical 190c for this to happen.

Another important calibration to do is to adjust the retraction distance until there is no stringing for the target temperature and filament using one of the models designed for this purpose on Thingiverse.

Comments

Popular posts from this blog

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to

Attiny85 timer programming using Timer1

This Arduino sketch uses Timer1 to drive the LED blinker: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 /* * Program ATTiny85 to blink LED connected to PB1 at 1s interval. * Assumes ATTiny85 is running at 1MHz internal clock speed. */ #include <avr/io.h> #include <avr/wdt.h> #include <avr/sleep.h> #include <avr/interrupt.h> bool timer1 = false , led = true ; // Interrupt service routine for timer1 ISR(TIMER1_COMPA_vect) { timer1 = true ; } void setup() { // Setup output pins pinMode( 1 , OUTPUT); digitalWrite( 1 , led); set_sleep_mode(SLEEP_MODE_IDLE); // Setup timer1 to interrupt every second TCCR1 = 0 ; // Stop timer TCNT1 = 0 ; // Zero timer GTCCR = _BV(PSR1); // Reset prescaler OCR1A = 243 ; // T = prescaler / 1MHz = 0.004096s; OCR1A = (1s/T) - 1 = 243 OCR1C = 243 ; // Set to same value to reset timer1 to

Hacking an analog clock to sync with NTP - Part 5

This is how it looks after I have put everything together. The Arduino sketch is available here . The 2 jumper wires soldered to the clock mechanism are connected to pins D0 and D1 on the ESP-12 (in any order). When the device first boots up, it presents an access point which can be connected to via the PC or smartphone. Once connected, the captive portal redirects the web browser to the configuration page:     A custom field has been added to the WiFi configuration page to enter the current clock time in HHMMSS format. Try to set the clock time to as close to the current time as possible using the radial dial at the back of the clock so the clock will have less work to do catching up. In the config page, the HTML5 Geolocation API is also used to obtain your current location (so if your web browser asks if you would like to share your location, answer "yes"). This is then passed to the Google Time Zone API to obtain the time and DST offset of your time z