Skip to main content

Bluetooth headsets: Samsung HM1700 vs Plantonics M25

I had been using a Samsung HM1700 headset for over a year now. Recently, the Plantonics M25 was on sale. It looks a lot smaller, lighter and sleeker than the Samsung HM1700, it supports A2DP, it has long battery life, so I bought one to have a try.

The thing about Bluetooth headset is that you can never tell how well it works for you from the specs. You have to live with it for a week or two before you can tell if the two of you are compatible, sorta like a roommate or girlfriend. So I lived with the M25 for a week.

Samsung HM1700

  • Long battery life
  • Great reception
  • Bigger and heavier
  • Ear loop is not as comfortable
Plantonics M25

  • Long battery life
  • Sleeker, smaller and lighter
  • Ear loop is fitting and comfortable
  • Too many A2DP dropouts for my liking. By that, I mean the A2DP stream will drop out for a second or two being picking up again. This happens when I turn or bend my body, pick up a tool etc. It happens with the HM1700 too, but much less frequently.
So it seems like I will be sticking with the HM1700 for now and returning the M25. Let's hope something better comes along later at the same price point.


Popular posts from this blog

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to

Hacking a USB-C to slim tip adapter cable to charge the Thinkpad T450s

This hack is inspired by this post . A year ago, I bought an adapter cable for my wife's Thinkpad X1 Carbon (2nd Gen) that allows her to power her laptop with a 60W-capable portable battery (20V x 3A). A USB-C cable goes from the battery into the adapter, which converts it to the slim tip output required by the laptop. Everything works out of the box, so I didn't give much thought about it. Recently, I decided to buy a similar cable for my Thinkpad T450s. I know technically it should work because the T450s can go as low as 45W (20V x 2.25A) in terms of charging (though I have the 65W charger - 20V x 3.25A).  I went with another adapter cable because it was cheaper and also I prefer the single cable design. So imagine my surprise when the cable came and I plugged it into my laptop and it didn't work! The power manager just cycle in and out of charging mode before giving up with an error message saying there is not enough power. After much research and reading the Thinkwiki

Attiny85 timer programming using Timer1

This Arduino sketch uses Timer1 to drive the LED blinker: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 /* * Program ATTiny85 to blink LED connected to PB1 at 1s interval. * Assumes ATTiny85 is running at 1MHz internal clock speed. */ #include <avr/io.h> #include <avr/wdt.h> #include <avr/sleep.h> #include <avr/interrupt.h> bool timer1 = false , led = true ; // Interrupt service routine for timer1 ISR(TIMER1_COMPA_vect) { timer1 = true ; } void setup() { // Setup output pins pinMode( 1 , OUTPUT); digitalWrite( 1 , led); set_sleep_mode(SLEEP_MODE_IDLE); // Setup timer1 to interrupt every second TCCR1 = 0 ; // Stop timer TCNT1 = 0 ; // Zero timer GTCCR = _BV(PSR1); // Reset prescaler OCR1A = 243 ; // T = prescaler / 1MHz = 0.004096s; OCR1A = (1s/T) - 1 = 243 OCR1C = 243 ; // Set to same value to reset timer1 to