Skip to main content

Attiny85 timer programming using Timer1

This Arduino sketch uses Timer1 to drive the LED blinker:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*
 * Program ATTiny85 to blink LED connected to PB1 at 1s interval.
 * Assumes ATTiny85 is running at 1MHz internal clock speed.
 */

#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/sleep.h>
#include <avr/interrupt.h>

bool timer1 = false, led = true;

// Interrupt service routine for timer1
ISR(TIMER1_COMPA_vect)
{
  timer1 = true;
}

void setup() {

  // Setup output pins
  pinMode(1, OUTPUT);
  digitalWrite(1, led);
  set_sleep_mode(SLEEP_MODE_IDLE);

  // Setup timer1 to interrupt every second
  TCCR1 = 0; // Stop timer
  TCNT1 = 0; // Zero timer
  GTCCR = _BV(PSR1); // Reset prescaler
  OCR1A = 243; // T = prescaler / 1MHz = 0.004096s; OCR1A = (1s/T) - 1 = 243
  OCR1C = 243; // Set to same value to reset timer1 to 0 after a compare match
  TIMSK = _BV(OCIE1A); // Interrupt on compare match with OCR1A
  
  // Start timer in CTC mode; prescaler = 4096; 
  TCCR1 = _BV(CTC1) | _BV(CS13) | _BV(CS12) | _BV(CS10);
  sei();
}

void loop() {
  if (timer1) {
    timer1 = false;
    led = !led;
    digitalWrite(1, led);
  }
  sleep_enable();
  sleep_cpu(); // CPU goes to sleep here; will be woken up by timer1 interrupt
}

The internal RC oscillator can have a factory variance of up to 10%. I observe that my blinker pulsed slightly faster than 1Hz.

Thankfully, unlike the watchdog oscillator, the internal RC oscillator can be calibrated by using the OSCCAL register, or adjusting the value of OCR1A. I believe it should not be too difficult to automatically calibrate the oscillator between NTP calls by taking the difference in actual time and clock time (in seconds) and adjust OCR1A accordingly to get as close to 1Hz as possible.

So on initial startup, the ESPCLOCK may not be pulsing at 1Hz, but after 15 or 30 minutes, it should be fully calibrated.

The downside with this approach is we can only use SLEEP_MODE_IDLE to keep Timer1 running during sleep, which is not as power efficient  as using the Watchdog Timer.

Comments

  1. Hi .help me to change the function from arduino codes at attyni85 usb .please help with .thanks
    void setup() {
    // put your setup code here, to run once:

    //timer2
    OCR2A = 127; //50% duty cycle
    TCCR2A = _BV(COM2A0) | _BV(WGM21) | _BV(WGM20); //toggle output, fast PWM mode
    TCCR2B = _BV(WGM22) | _BV(CS21) | _BV(CS20); // fast PWM mode, prescale 1:64
    pinMode(11, OUTPUT);

    }

    void loop()
    {

    delay(200); //duration of each frequency
    OCR2A += 10; //step size of frequency change
    if(OCR2A >= 245){OCR2A = 10; } //range of sweep, 245 is max.

    }

    ReplyDelete
  2. there are only 2 timers on attiny85, timer0 and timer1

    ReplyDelete

Post a Comment

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Filament Joiner Part 2 (With Display and Knob)

Thanks to the current corona-virus crisis, the parts I ordered for the filament joiner project were taking forever to arrive. But now that they have finally arrived, I can put them to good use. These were the parts ordered: 0.96" OLED display SSD1306 Rotary switch encoder KY-040 Here is the final circuit diagram: The OLED display is connected to the SCK and SDA pins of the Nano (A2 and A3 respectively), and powered by 5V and GND. The rotary switch encoder is connected as follows: VCC => 5V GND = > GND CLK => D9 DT => D8 SW => D2 My prototype board now looks like this: The updated code for driving the knob and display is available in  heater-with-display.ino in the Github repository . We now have a fairly compact (about 7cm x 5cm) and independent filament joiner (no need to connect to PC) that is driven solely by a 12V power supply. Here's how to use it to join printer filaments. More usage details in my previous post .

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to