Skip to main content

Replacing the camera on the MJX Bugs B2W

The MJX Bugs B2W drone is great to fly. It stays relatively stable even in moderate wind, has great range, and the return-to-home function coupled with GPS means you are unlikely to lose your drone even when it goes out of range.

The onboard WIFI camera, however, is another story. I could never get it to go beyond 100m (that's paired with an iPad Air 2, which gives better range than all the smartphones I have tried). Even when it's within range, the video is both laggy and jerky.

So there's no other choice but to replace the camera with a proper 5.8GHz FPV. These were the parts I bought:

Many people have tried different ways of modding the B2W. Some chose to preserve the onboard camera while adding the new one (I decided to rip the whole thing out to reduce the weight). Some chose to power the camera + VTX with its own battery (I chose to power the assembly with the onboard camera battery terminal).

Removing the onboard camera is a pretty straightforward affair. First you remove the four blades (make sure to put them back in the same positions; there are 2 A-type blades, and 2 B-type blades, and they need to be inserted diagonally opposite each other). Then turn the drone over and remove all the screws at the bottom (lots of them!). Then remove the top body, which is connected to the main board with 2 connectors. We are left with the bottom body to play with.

Remove the connector to the camera module (marked blue). Also remove the 4 screws to the main board (marked red) to have more room at the bottom to maneuver when adding the new camera + VTX. Once that's done, it should be relatively easy to rip out the camera module:

I left the camera lens itself untouched.

This is the Foxeer camera:

This is the Eachine VTX:

The camera needs to be hooked up to the VTX, and the entire thing needs to be hooked up to the power supply. I cut off the connector from the onboard camera module and hooked up the VCC and GND wires to the camera and VTX:

The VID (yellow wire) from the camera is hooked up to the corresponding wire on the VTX. The wires are soldered together for additional strength, then insulated with some electrical tape.

It is now possible to test the assembly by inserting the power connector from the onboard module into the main board, then powering up the drone by inserting the battery. I pretty much used the default settings on the camera and the VTX. I plugged the Eachine OTG receiver into my Android phone and ran GoFPV. After pressing the "Scan" button on the receiver and waiting for a few seconds, the camera image appears on the screen, verifying that the entire setup is working!

Now to put everything together...

I mounted the camera mount at the bottom of the drone towards the front with a single screw:

An electrical drill with a tiny drill bit helps here, and you should set the drill speed to the lowest to avoid breaking the plastic accidentally.

The camera goes into the mount:

The VTX is mounted to the bottom of the drone with 2 screws:

Another hole is drilled at the bottom to allow the power connector to pass through and connect to the main board:

With VTX antenna mounted:

With battery inserted and powered up:

The antenna looks like a nasty sting!

Here it is, with everything put together (with zip ties as props, until I can get better ones):


Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Filament Joiner Part 2 (With Display and Knob)

Thanks to the current corona-virus crisis, the parts I ordered for the filament joiner project were taking forever to arrive. But now that they have finally arrived, I can put them to good use. These were the parts ordered: 0.96" OLED display SSD1306 Rotary switch encoder KY-040 Here is the final circuit diagram: The OLED display is connected to the SDA and SCL pins of the Nano (A4 and A5 respectively), and powered by 5V and GND. The rotary switch encoder is connected as follows: VCC => 5V GND = > GND CLK => D9 DT => D8 SW => D2 My prototype board now looks like this: The updated code for driving the knob and display is available in  heater-with-display.ino in the Github repository . We now have a fairly compact (about 7cm x 5cm) and independent filament joiner (no need to connect to PC) that is driven solely by a 12V power supply. Here's how to use it to join printer filaments. More usage details in my previous post .

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to