Skip to main content

Running an analog clock backwards

I didn't think it was possible, but recently I came across this YouTube video and its associated blog post (in Japanese, which I was able to understand thanks to Google Translate):

Here's a diagram to contrast the pulses sent to the clock lines to turn the clock backwards, versus driving it forward:


As you can see, during the first time step, instead of sending a single positive or negative pulse, you send a short pulse, wait a little, then send a longer pulse in the opposite direction. Then in the next time step, a mirror image of the pulses in the previous time step is sent. The duration of the pulses has to be experimentally determined for different clock motions.

For example, I was able to use this follow code to move the second hand on my clock in a reverse motion reliably:

int tickpin = 25;

void rtick() {
  digitalWrite(tickpin, HIGH); delay(10);
  digitalWrite(tickpin, LOW); delay(10);
  tickpin = (tickpin == 25 ? 27 : 25);
  digitalWrite(tickpin, HIGH); delay(30);
  digitalWrite(tickpin, LOW);
} 

So the short pulse is 10ms, the short wait is also 10ms. The longer pulse is 30ms.

Here is a video of the clock in reverse motion:


I was able to reverse-drive the clock reliably up to 4x speed using the code above. I pause the second hand after every 60 ticks, and noted where the stoppage point is. Then I let the code run overnight and came back in the morning to check that the second hand is still stopping at the same place.

But once I tried increasing the speed to 5x or 8x, slippages started to occur.



Comments

Popular posts from this blog

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to

Attiny85 timer programming using Timer1

This Arduino sketch uses Timer1 to drive the LED blinker: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 /* * Program ATTiny85 to blink LED connected to PB1 at 1s interval. * Assumes ATTiny85 is running at 1MHz internal clock speed. */ #include <avr/io.h> #include <avr/wdt.h> #include <avr/sleep.h> #include <avr/interrupt.h> bool timer1 = false , led = true ; // Interrupt service routine for timer1 ISR(TIMER1_COMPA_vect) { timer1 = true ; } void setup() { // Setup output pins pinMode( 1 , OUTPUT); digitalWrite( 1 , led); set_sleep_mode(SLEEP_MODE_IDLE); // Setup timer1 to interrupt every second TCCR1 = 0 ; // Stop timer TCNT1 = 0 ; // Zero timer GTCCR = _BV(PSR1); // Reset prescaler OCR1A = 243 ; // T = prescaler / 1MHz = 0.004096s; OCR1A = (1s/T) - 1 = 243 OCR1C = 243 ; // Set to same value to reset timer1 to

Hacking an analog clock to sync with NTP - Part 5

This is how it looks after I have put everything together. The Arduino sketch is available here . The 2 jumper wires soldered to the clock mechanism are connected to pins D0 and D1 on the ESP-12 (in any order). When the device first boots up, it presents an access point which can be connected to via the PC or smartphone. Once connected, the captive portal redirects the web browser to the configuration page:     A custom field has been added to the WiFi configuration page to enter the current clock time in HHMMSS format. Try to set the clock time to as close to the current time as possible using the radial dial at the back of the clock so the clock will have less work to do catching up. In the config page, the HTML5 Geolocation API is also used to obtain your current location (so if your web browser asks if you would like to share your location, answer "yes"). This is then passed to the Google Time Zone API to obtain the time and DST offset of your time z