Skip to main content

ESPCLOCK4 - Dealing with low or removed batteries

One of the requirement of the ESPCLOCK project is to deal with persisting the clock time when the supply batteries run low, or when they are removed for battery change. For previous iterations of the project, a 0.47F supercap was attached to the ATtiny85 to keep it powered it long enough during a cut-off to write the clock time to flash memory.

For the ESP32, I found out it is impossible to power the main processor with the supercap, even if WiFi is not activated. It is just too power hungry! However, it is able to keep the ULP powered for 5 to 6 minutes. I found this out by getting the ULP to toggle an output pin and monitoring the output with a logic analyzer. The 0.47F supercap is placed across the 3.3V and GND pins. Power is supplied via the 5V pin. When the supply is pulled, the ULP continues to produce output for a further 5 to 6 minutes.

So the strategy I will adopt is this. The ULP will measure the supply voltage via a voltage divider.
When the supply voltage drops below a certain threshold (eg. 4.2V for 4xAA), it will stop everything. The residual power in the batteries will keep the ULP and values stored in RTC slow memory running for a very long time, until the batteries are replaced.

When the batteries are taken out for replacement, the supercap will keep the ULP and RTC slow memory intact for 5 to 6 minutes. This should give more than sufficient time for a battery change. Of course, if for whatever reason the batteries are absent for longer than this interval, the unit will have to be reconfigured by doing a factory reset.


Comments

Popular posts from this blog

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to

Attiny85 timer programming using Timer1

This Arduino sketch uses Timer1 to drive the LED blinker: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 /* * Program ATTiny85 to blink LED connected to PB1 at 1s interval. * Assumes ATTiny85 is running at 1MHz internal clock speed. */ #include <avr/io.h> #include <avr/wdt.h> #include <avr/sleep.h> #include <avr/interrupt.h> bool timer1 = false , led = true ; // Interrupt service routine for timer1 ISR(TIMER1_COMPA_vect) { timer1 = true ; } void setup() { // Setup output pins pinMode( 1 , OUTPUT); digitalWrite( 1 , led); set_sleep_mode(SLEEP_MODE_IDLE); // Setup timer1 to interrupt every second TCCR1 = 0 ; // Stop timer TCNT1 = 0 ; // Zero timer GTCCR = _BV(PSR1); // Reset prescaler OCR1A = 243 ; // T = prescaler / 1MHz = 0.004096s; OCR1A = (1s/T) - 1 = 243 OCR1C = 243 ; // Set to same value to reset timer1 to

Hacking an analog clock to sync with NTP - Part 5

This is how it looks after I have put everything together. The Arduino sketch is available here . The 2 jumper wires soldered to the clock mechanism are connected to pins D0 and D1 on the ESP-12 (in any order). When the device first boots up, it presents an access point which can be connected to via the PC or smartphone. Once connected, the captive portal redirects the web browser to the configuration page:     A custom field has been added to the WiFi configuration page to enter the current clock time in HHMMSS format. Try to set the clock time to as close to the current time as possible using the radial dial at the back of the clock so the clock will have less work to do catching up. In the config page, the HTML5 Geolocation API is also used to obtain your current location (so if your web browser asks if you would like to share your location, answer "yes"). This is then passed to the Google Time Zone API to obtain the time and DST offset of your time z