Skip to main content

Arduino control of PTX4 remote

I wanted to control the opening and closing of my front gate using the ESP8266. The gate uses a standard PTX4 remote, which is readily available at many hardware stores.

To my surprise, I couldn't find a hardware module that I can buy off-the-shelf and interface with the ESP8266. So I bought an extra remote, paired it with the gate receiver and proceeded to take it apart to see how I can use the circuitry inside.

SW4 is the button I press to open/close the gate. Points (1) and (2) are the junctions I need to short using a relay to simulate a button press. I measured point (1) to be 12V, so I need a 12V relay for this to work. The one that's readily available to me is SY4032. Since the operating voltage is 12V, I also need to use a MOSFET (the good ol' 2N7000) to drive the relay.

The gate pin needs to be grounded with a resistor, otherwise a spurious signal might be sent to the relay when the MCU is first powered on.

Another thing I did was to get rid of the A23 battery by connecting a DC booster (MT3608) to the 5V output of the WEMOS D1 Mini and calibrating it to output 12V.  So now the entire circuit can be driven by the USB input to the WEMOS D1 Mini without the need for an extra battery.


Comments

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Attiny85 timer programming using Timer1

This Arduino sketch uses Timer1 to drive the LED blinker: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 /* * Program ATTiny85 to blink LED connected to PB1 at 1s interval. * Assumes ATTiny85 is running at 1MHz internal clock speed. */ #include <avr/io.h> #include <avr/wdt.h> #include <avr/sleep.h> #include <avr/interrupt.h> bool timer1 = false , led = true ; // Interrupt service routine for timer1 ISR(TIMER1_COMPA_vect) { timer1 = true ; } void setup() { // Setup output pins pinMode( 1 , OUTPUT); digitalWrite( 1 , led); set_sleep_mode(SLEEP_MODE_IDLE); // Setup timer1 to interrupt every second TCCR1 = 0 ; // Stop timer TCNT1 = 0 ; // Zero timer GTCCR = _BV(PSR1); // Reset prescaler OCR1A = 243 ; // T = prescaler / 1MHz = 0.004096s; OCR1A = (1s/T) - 1 = 243 OCR1C = 243 ; // Set to same value to reset timer1 to

Line adapter for Ozito Blade Trimmer

This is an adapter for Ozito 18V battery trimmer (and possibly some Bosch trimmers as well) that uses a plastic blade for cutting. It lets you insert a 2.4mm trimmer line (about 8cm long) and use that for cutting. Simply cut a length of trimmer line and briefly heat up one end with a lighter so that a little bulb is formed. Then insert the trimmer line into the adapter and slot that into the trimmer as per normal. Make sure the trimmer line is not so long that it touches the safety guard. If that is the case, simply trim off any excess with a cutter or scissors. This part is best printed using PETG, which is a tougher and more flexible material. PLA is more rigid and breaks more easily. However, even with PETG, it will still break when it hits something really hard. Since this takes only 0.5m of material and 15 minutes to print, I will usually print a batch of nine at a time at very little cost. The blades that they sell do not break when it hits a hard object, but