Skip to main content

ESPCLOCK4 - Reduce operating current by removing UART module

The ESP32 Mini uses a CP2104 UART module to drive the USB port.  The CP2104 is configured in self-powered mode, which means that even if nothing is plugged into the USB port and the board is powered by a 3.3V source, it is still drawing ~100uA of current. I wanted to see the effect of removing this module on the power consumption of my test circuit.

Removing the UART module means losing access to the USB port. However, I should still be able to program it using a standard FTDI programmer, which I wanted to verify. So I took out the same FTDI programmer that was used for programming the ESP8266, and built a custom holder for the ESP32 Mini.




I started with the same connections as used with the ESP8266:
  • ESP32 VIN <-> FTDI 3.3V
  • ESP32 GND <-> FTDI GND
  • ESP32 TX <-> FTDI RX
  • ESP32 RX <-> FTDI TX
However, I could not get it to work. After some fiddling around, I discovered I could only get it to work by connecting RX - RX and TX - TX. Not sure why.

But now I am confident I can still program the board without its USB, so I proceed to remove the CP2104 module (marked in red) with a hot air gun.


After removing the UART module,  I verified that the board was still working by uploading the code here, and plugging it into the test circuit. Sure enough, the clock started ticking. It worked!

I then tried measuring the current consumption using the LTC4150. Unfortunately, the current seems too low to be measured. After doing some research, I decided to swap out the 0.05ohm sense resistor with a 1ohm resistor. Because I didn't have a 1% part, I simply used a normal 5% metal film resistor. However, I did calibrate it against a multimeter with a 10kohm resistor over a 3.3V power source. I found the measurement to be within ~20uA tolerance.

Note: with such small current, the power used by the LTC4150 itself becomes very important. From the datasheet, at 2.7V, its typical power usage is 80uA, with a max of 100uA. With a 10Kohm passive load, I got a reading of 430uA. Substracting 90uA from the reading gives me 340uA, which compares well with the multimeter reading of 326uA.

Using a 1ohm sense resistor means I can no longer use WiFi in my test code. The 500mA current drawn will cause the board to brown out and reset.

So finally, with the UART module removed, the current draw is 650uA - 90uA = 560uA, or ~0.6mA. This is a hugely improvement over the 1.13mA that I measured previously with the UART module intact.

So it looks like I am going to go ahead and create the full ESPCLOCK code with this setup.

Comments

Popular posts from this blog

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to

Attiny85 timer programming using Timer1

This Arduino sketch uses Timer1 to drive the LED blinker: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 /* * Program ATTiny85 to blink LED connected to PB1 at 1s interval. * Assumes ATTiny85 is running at 1MHz internal clock speed. */ #include <avr/io.h> #include <avr/wdt.h> #include <avr/sleep.h> #include <avr/interrupt.h> bool timer1 = false , led = true ; // Interrupt service routine for timer1 ISR(TIMER1_COMPA_vect) { timer1 = true ; } void setup() { // Setup output pins pinMode( 1 , OUTPUT); digitalWrite( 1 , led); set_sleep_mode(SLEEP_MODE_IDLE); // Setup timer1 to interrupt every second TCCR1 = 0 ; // Stop timer TCNT1 = 0 ; // Zero timer GTCCR = _BV(PSR1); // Reset prescaler OCR1A = 243 ; // T = prescaler / 1MHz = 0.004096s; OCR1A = (1s/T) - 1 = 243 OCR1C = 243 ; // Set to same value to reset timer1 to

Hacking an analog clock to sync with NTP - Part 5

This is how it looks after I have put everything together. The Arduino sketch is available here . The 2 jumper wires soldered to the clock mechanism are connected to pins D0 and D1 on the ESP-12 (in any order). When the device first boots up, it presents an access point which can be connected to via the PC or smartphone. Once connected, the captive portal redirects the web browser to the configuration page:     A custom field has been added to the WiFi configuration page to enter the current clock time in HHMMSS format. Try to set the clock time to as close to the current time as possible using the radial dial at the back of the clock so the clock will have less work to do catching up. In the config page, the HTML5 Geolocation API is also used to obtain your current location (so if your web browser asks if you would like to share your location, answer "yes"). This is then passed to the Google Time Zone API to obtain the time and DST offset of your time z