Skip to main content

3D Printed Universal Battery Capacity Tester

Well, you don't really 3D print the entire battery tester. That would be neat though.


This is a actually a 3D-printed casing for the ZB206 battery capacity tester.


What you do print is an integrated battery holder (rubber-band-powered) that can hold an AAA, AA or 18650 battery for testing. So it is easy to pop in any of those batteries and begin testing its capacity immediately.


The ZB206 is mounted to the casing using 4 M3 x 6mm screws. There are 4 bolts that come with the board. I repurposed 2 of them as battery terminals, as shown in the photo.



ZB206 usage instructions:
  • If battery meter beeps on power on, press the [SK] button.
  • Press [SK-] and [SK+] buttons to set the discharge current. For NiMH AA batteries, use ~0.5A. For 18650 cells, you can go as high as 1.5A depending on the cell condition.
  • Press [SK] button to start the testing process.
  • When the battery meter beeps. the testing process is complete. The A.h display will show you the capacity of the battery. For example, a 2400mAh battery will show "2.400".
This page describes more about the capabilities and configuration of ZB206.


Comments

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

3D Printer Filament Joiner

I have been looking at various ways of joining 3D printing filaments. One method involves running one end of a filament through a short PTFE tubing, melting it with a lighter or candle, retracting it back into the tubing and immediately plunging the filament to be fused into the tubing: One problem with this method is that you can't really control the temperature at which you melt the filament, so you frequently end up with a brittle joint that breaks upon the slightest bend. Aliexpress even sells a contraption that works along the same line. As it uses a lighter or candle as well, it suffers from the same weakness. I am not even sure why you need a special contraption when a short PTFE tubing will work just as well. Another method involves using shrink tubing/aluminium foil, and a heat gun: But a heat gun is rather expensive, so I wanted to explore other alternatives. The candle + PTFE tubing method actually works quite well when you happen to melt it at the rig

Attiny85 timer programming using Timer1

This Arduino sketch uses Timer1 to drive the LED blinker: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 /* * Program ATTiny85 to blink LED connected to PB1 at 1s interval. * Assumes ATTiny85 is running at 1MHz internal clock speed. */ #include <avr/io.h> #include <avr/wdt.h> #include <avr/sleep.h> #include <avr/interrupt.h> bool timer1 = false , led = true ; // Interrupt service routine for timer1 ISR(TIMER1_COMPA_vect) { timer1 = true ; } void setup() { // Setup output pins pinMode( 1 , OUTPUT); digitalWrite( 1 , led); set_sleep_mode(SLEEP_MODE_IDLE); // Setup timer1 to interrupt every second TCCR1 = 0 ; // Stop timer TCNT1 = 0 ; // Zero timer GTCCR = _BV(PSR1); // Reset prescaler OCR1A = 243 ; // T = prescaler / 1MHz = 0.004096s; OCR1A = (1s/T) - 1 = 243 OCR1C = 243 ; // Set to same value to reset timer1 to