Skip to main content

Line adapter for Ozito Blade Trimmer

This is an adapter for Ozito 18V battery trimmer (and possibly some Bosch trimmers as well) that uses a plastic blade for cutting.


It lets you insert a 2.4mm trimmer line (about 8cm long) and use that for cutting.


Simply cut a length of trimmer line and briefly heat up one end with a lighter so that a little bulb is formed.


Then insert the trimmer line into the adapter and slot that into the trimmer as per normal. Make sure the trimmer line is not so long that it touches the safety guard. If that is the case, simply trim off any excess with a cutter or scissors.


This part is best printed using PETG, which is a tougher and more flexible material. PLA is more rigid and breaks more easily. However, even with PETG, it will still break when it hits something really hard. Since this takes only 0.5m of material and 15 minutes to print, I will usually print a batch of nine at a time at very little cost. The blades that they sell do not break when it hits a hard object, but it will dislodge and fly off, so the end result to me is the same (but costs more).

I print this with 100% infill.

You can find the OpenSCAD source file and STL on Thingiverse.

Update 22 Sep 2019: PETG is still no tough enough for this part. I checked, and the original trimmer blade is made with PA-6, which is a type of nylon. PA-6 filament is available for purchase, but they are double the price of PLA/PETG. 

Comments

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Filament Joiner Part 2 (With Display and Knob)

Thanks to the current corona-virus crisis, the parts I ordered for the filament joiner project were taking forever to arrive. But now that they have finally arrived, I can put them to good use. These were the parts ordered: 0.96" OLED display SSD1306 Rotary switch encoder KY-040 Here is the final circuit diagram: The OLED display is connected to the SDA and SCL pins of the Nano (A4 and A5 respectively), and powered by 5V and GND. The rotary switch encoder is connected as follows: VCC => 5V GND = > GND CLK => D9 DT => D8 SW => D2 My prototype board now looks like this: The updated code for driving the knob and display is available in  heater-with-display.ino in the Github repository . We now have a fairly compact (about 7cm x 5cm) and independent filament joiner (no need to connect to PC) that is driven solely by a 12V power supply. Here's how to use it to join printer filaments. More usage details in my previous post .

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to