Skip to main content

DIY Roomba Virtual Wall, Part 5

After using the DIY Roomba Virtual Walls for a week now, I found something interesting that is rarely mentioned by the folks who have made this. The only mention I could find is from this blog post:

"After examining the original virtual wall, with a webcam, I was able to see that it emits infrared light from its top round transparent ring and from a small hole above the switches. The light coming from the top ring prevents the robot from colliding with the virtual wall, if it comes from its sides or from behind. The front hole emits light as a beam. This beam of light is directional and stops at the nearest obstacle, probably a real wall, preventing the robot from crossing it to the other side."

Indeed, when using the DIY version, the first thing I noticed is that the unit has to be strategically placed because the Roomba will knock into it more often than expected. 

So a more robust DIY version will need to have another IR LED pointing at some kind of conical reflector mounted at the top that spreads the IR signal around the unit to prevent Roomba from running into it, just like the commercial version.

Mind you, the DIY version still works very well. It's just that some thought needs to be given to its placement so that it won't be knocked away or tipped over by the Roomba easily.


Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Filament Joiner Part 2 (With Display and Knob)

Thanks to the current corona-virus crisis, the parts I ordered for the filament joiner project were taking forever to arrive. But now that they have finally arrived, I can put them to good use. These were the parts ordered: 0.96" OLED display SSD1306 Rotary switch encoder KY-040 Here is the final circuit diagram: The OLED display is connected to the SCK and SDA pins of the Nano (A2 and A3 respectively), and powered by 5V and GND. The rotary switch encoder is connected as follows: VCC => 5V GND = > GND CLK => D9 DT => D8 SW => D2 My prototype board now looks like this: The updated code for driving the knob and display is available in  heater-with-display.ino in the Github repository . We now have a fairly compact (about 7cm x 5cm) and independent filament joiner (no need to connect to PC) that is driven solely by a 12V power supply. Here's how to use it to join printer filaments. More usage details in my previous post .

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to