Skip to main content

DIY Roomba Virtual Wall, Part 2

Following on the success of the test circuit, I added a status LED and a pushbutton to the breadboard. 

A summary of the connections:

  • IR LED connected to pin 3 (PB4) of the ATtiny85 (100ohm current- limiting resistor). Pin 3 is where the tiny_IRremote library sends its output to by default.
  • Normal LED connected to pin 2 (PB3, 220ohm current-limiting resistor). We will use this LED as a status indicator to 1) signal power-on 2) signal battery low
  • Pushbutton connected to pin 6 (PB1, 10Kohm pull-up resistor). We will use this as a soft switch to turn the virtual wall on/off.

The Arduino source code is available here.

Note: I configured ATtiny85 to run at 1MHz for additional power saving. Correspondingly, in tiny_IRremoteInt.h, I had to change #define SYSCLOCK from 8000000 to 1000000.

Some highlights of the code:

  • Pin change interrupt is used to monitor when the pushbutton is pressed to turn on the unit.
  • In normal operation, status LED flashes every second.
  • Watchdog timer interrupt is triggered every 64s to measure the battery level. If battery level drops to below 2.8V, status LED flashes 0.1s every 4 seconds to signal that battery needs to be changed.
  • The circuit automatically turns off after 80 minutes.

I powered the circuit using 3xAA NiMH rechargeable batteries. Since the operating voltage of the ATtiny85 is 2.7V - 5.5V, 2xAA alkaline batteries will also work. But with 3xAA, both rechargeables and alkalines can be used, so I went with that.

Using the current meter to measure,  when the circuit is off, the current consumption is around 0.2mA. When the circuit is on and emitting signal, the current consumption is around 5.5mA.

At 2000mAH per AA NiMH battery, this works out to 363 hours of continous operation. If the unit is run for 2 x 80 minutes every day, the battery would still last for at least 3 months, which is good enough for me. Plus I much prefer to work with AA rechargeables than C-size batteries which the original virtual wall requires.

I soldered the components down onto a prototype board, and here's what I came up with:

The prototype board is 5cm x 7cm cut in half, so the dimension is 5cm x 3.5cm.

The IR LED is the one jutting out horizontally in front. The white 2-pin JST female connector is for interfacing with the battery holder.

A 0.1uF ceramic capacitor is added between the VCC and GND pins of the ATtiny85 for decoupling purpose.

In the next step, I will 3D print a suitable enclosure for the virtual wall.

Part 1 - Part 3 - Part 4


Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Attiny85 timer programming using Timer1

This Arduino sketch uses Timer1 to drive the LED blinker: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 /* * Program ATTiny85 to blink LED connected to PB1 at 1s interval. * Assumes ATTiny85 is running at 1MHz internal clock speed. */ #include <avr/io.h> #include <avr/wdt.h> #include <avr/sleep.h> #include <avr/interrupt.h> bool timer1 = false , led = true ; // Interrupt service routine for timer1 ISR(TIMER1_COMPA_vect) { timer1 = true ; } void setup() { // Setup output pins pinMode( 1 , OUTPUT); digitalWrite( 1 , led); set_sleep_mode(SLEEP_MODE_IDLE); // Setup timer1 to interrupt every second TCCR1 = 0 ; // Stop timer TCNT1 = 0 ; // Zero timer GTCCR = _BV(PSR1); // Reset prescaler OCR1A = 243 ; // T = prescaler / 1MHz = 0.004096s; OCR1A = (1s/T) - 1 = 243 OCR1C = 243 ; // Set to same value to reset timer1 to

3D Printer Filament Joiner

I have been looking at various ways of joining 3D printing filaments. One method involves running one end of a filament through a short PTFE tubing, melting it with a lighter or candle, retracting it back into the tubing and immediately plunging the filament to be fused into the tubing: One problem with this method is that you can't really control the temperature at which you melt the filament, so you frequently end up with a brittle joint that breaks upon the slightest bend. Aliexpress even sells a contraption that works along the same line. As it uses a lighter or candle as well, it suffers from the same weakness. I am not even sure why you need a special contraption when a short PTFE tubing will work just as well. Another method involves using shrink tubing/aluminium foil, and a heat gun: But a heat gun is rather expensive, so I wanted to explore other alternatives. The candle + PTFE tubing method actually works quite well when you happen to melt it at the rig