Skip to main content

ESPCLOCK4 - A Rethink On Tick Pulse Generation

Having dabbled recently with PWM (Pulse Width Modulation) for motor control, it struck me that maybe the same technique can be applied for pulsing the Lavet stepper motor in the analog clock.

Just a recap. The Lavet stepper motor within the analog clock is design to function at ~1.5V. However, the output on the ESP8266 and ESP32 is 3.3V, and in ESPCLOCK3, the ATtiny85 is powered at ~3V. For reasons I don't fully understand, the pulse width needs to be as long as 100ms in this case, otherwise the clock will not tick reliably. This also leads to high power draw, because higher voltage + longer pulse width. In contrast, the original clock signal is 32ms pulse width at ~1.5V (which can go as low as ~1.1V since it is running on a normal AA battery).

So in ESPCLOCK3, a diode bridge is introduced, where 2 diodes in each direction drops the 3V output by the ATtiny85 down to ~1.8V (3V - 0.6V x 2), which worked remarkably well in reducing the power draw and making the clock tick with 100% reliability.

Much like PWM in DC motor control, the idea is to eliminate the diode bridge and instead output a PWM modulated pulse signal, which should reduce the effective voltage to the clock.

With some experimentation, the ideal duty cycle of the PWM was found to be 62.5%. The output is 1.25ms on, 0.75ms off, repeated 20 times (for a total of 40ms). Both 62.5% and 40ms were found to be lower bounds for reliable operation.

The 62.5% duty cycle surprised me, because from my naive calculation, for an effective voltage of say, 1.5V, the duty cycle should be 1.5 / 3.3, which is 45%. 62.5% duty cycle implies an effective voltage of ~2V, which is much higher than I expected. I suspect my naive formula for calculating the duty cycle is wrong.

It was quite easy to modify the test program to output PWM pulses. This macro was added:

// Pulse given tickpin - 40ms duration = 20 x (1.25/2ms) PWM => 62.5% duty cycle ~ 2V
#define X_TICK_PIN(pin) \
    I_MOVI(R0, 20), \
  M_LABEL(_PULSE_##pin), \
    X_GPIO_SET(pin, 1), I_DELAY(10000), \
    X_GPIO_SET(pin, 0), I_DELAY(16000-10000), \
    I_SUBI(R0, R0, 1), \
    M_BGE(_PULSE_##pin, 1)

The macro is then used in the ticking logic:

    // Decide which pin to tick
    X_RTC_LOAD(TICK_PIN, R0),                           
    // Pulse tick pin 1
    // Pulse tick pin 2

I was pleasantly surprised this worked very well. It made the clock tick reliably without the diode bridge. Even better, this approach brought the power draw from 1.37mA down to 1.13mA, so it's a keeper!


  1. What would the code equivalent for X_TICK_PIN be if I want to drive the clock using PCA9685 via ESP32 ?

    1. Apologies, but I am not mighty familiar with the PCA9685. But it's just a standard PWN signal. As long as you can program it to output a PWN signal on one of its pins, you can play around with the duration and duty cycle of the signal. It doesn't take long to find the approximate duration/duty-cycle to use for a particular clock. It takes longer to home in on the right values for reliable operation. Sometimes slippages will occur after 10 or 20 minutes, so it is not sufficient to let the clock run for only a few minutes.

    2. Will try that next week. Was being lazy and trying to get the conversion of your X_TICK_PIN code to more standard PWM code :)


Post a Comment

Popular posts from this blog

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to

Hacking a USB-C to slim tip adapter cable to charge the Thinkpad T450s

This hack is inspired by this post . A year ago, I bought an adapter cable for my wife's Thinkpad X1 Carbon (2nd Gen) that allows her to power her laptop with a 60W-capable portable battery (20V x 3A). A USB-C cable goes from the battery into the adapter, which converts it to the slim tip output required by the laptop. Everything works out of the box, so I didn't give much thought about it. Recently, I decided to buy a similar cable for my Thinkpad T450s. I know technically it should work because the T450s can go as low as 45W (20V x 2.25A) in terms of charging (though I have the 65W charger - 20V x 3.25A).  I went with another adapter cable because it was cheaper and also I prefer the single cable design. So imagine my surprise when the cable came and I plugged it into my laptop and it didn't work! The power manager just cycle in and out of charging mode before giving up with an error message saying there is not enough power. After much research and reading the Thinkwiki

Using Google Dashboard to manage your Android device backup

I used to use AppBrain/Fast Web Install to keep track of which apps I have installed on my phone, and to make it easier to reinstall those apps when the phone gets wiped or replaced. But AppBrain had been going down the tubes, and Fast Web Install had always been a hit-and-miss affair. Android's own "backup to the cloud" system had previously been even more unusable. There isn't a place where you can see what has been backed up. And when you setup a new phone with your Google account, you just have to wait and pray that your favorite apps will be restored to the phone. Typically all the stars have to be aligned just right for this to happen. More often than not, after waiting for an hour or so and nothing happens, you just curse under your breath and proceed to install your favorites apps manually via the Play Store. But I just looked again recently and was pleasantly surprised that things are much more civilized now. Firstly there is a place now where you can loo