Skip to main content

Switching ATtiny core

I was not getting reliable I2C communication between the D1 mini and the ATtiny85, starting with TinyWireS, then moving on to the more developed TinyWire. I would send out 5 bytes from the D1 mini, then try to get 16 bytes back. It will start off well, but a few hours later, something will break and the D1 mini will start getting 0xFFs from the ATtiny85.

Then I found "ATtinyCore" by Spence Konde (V1.1.5), which appears to be a more mature ATtiny core compared to the "attiny" core by David Mellis (V1.0.2). It has integrated I2C support that manifests as the familiar "Wire" library. The installation instructions are here. I did a manual upgrade to the latest git version as some I2C issues have been fixed in the V1.1.6 milestone but have not been officially released. As recommended by the instructions, I bumped up the Arduino version to 1.8.6.

Finally, happy to see reliable I2C communication between the 2 components! The communication has been going non-stop for 2 days now, with 1-minute interval between the send/receiving of messages.

From the D1 mini end, the I2C master code is:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
  byte outbuf[5];
  outbuf[0] = random(128); for (int i=1; i<sizeof(outbuf); i++) outbuf[i] = outbuf[0] + (i*2);
  Wire.beginTransmission(I2C_SLAVE_ADDR);
  int rc = Wire.write(outbuf, sizeof(outbuf));
  Wire.endTransmission();
  debug("Wire.write (%d): %X %X %X %X %X", rc, outbuf[0], outbuf[1], outbuf[2], outbuf[3], outbuf[4]);

  byte inbuf[15];
  Wire.requestFrom(I2C_SLAVE_ADDR, 15);
  Wire.readBytes(inbuf, 15);
  Serial.print("Wire.readBytes: ");
  for (int i=0; i<sizeof(inbuf); i++) { Serial.print(inbuf[i], HEX); Serial.print(' '); } Serial.println(' ');

From the ATtiny85, the corresponding I2C code is:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
volatile byte msg[5], out[15];

void requestEvent() {
  Wire.write(out, 15);
}

void receiveEvent(uint8_t numbytes) {
  if (numbytes > sizeof(msg)) return;
  int idx = 0;
  while(idx < numbytes) {
    if (Wire.available()) 
      msg[idx++] = Wire.read();
  }
  out[0] = numbytes;
  for (int i=1; i<sizeof(out); i++) out[i] = msg[(i-1) % numbytes];
}  

For testing purposes, the D1 mini sends out 5 random bytes, and the ATtiny85 basically copies the received message into the outgoing buffer, with the first byte being the length of the received message (should be always '5').

I found that the maximum number of bytes that can be sent by each requestEvent() is 15 (one less the default value of TWI_RX_BUFFER_SIZE in Wire\src\USI_TWI_Slave\USI_TWI_Slave.h. That could be increased to 32, or 64 (powers of 2 up to 256, as noted in the comment). A workaround will be for the master to make multiple requestFrom() calls, and for the slave to keep track of which block of 15 bytes to send out in requestEvent().

ESPCLOCK1 / ESPCLOCK2 / ESPCLOCK3 / ESPCLOCK4

Comments

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

3D Printer Filament Joiner

I have been looking at various ways of joining 3D printing filaments. One method involves running one end of a filament through a short PTFE tubing, melting it with a lighter or candle, retracting it back into the tubing and immediately plunging the filament to be fused into the tubing: One problem with this method is that you can't really control the temperature at which you melt the filament, so you frequently end up with a brittle joint that breaks upon the slightest bend. Aliexpress even sells a contraption that works along the same line. As it uses a lighter or candle as well, it suffers from the same weakness. I am not even sure why you need a special contraption when a short PTFE tubing will work just as well. Another method involves using shrink tubing/aluminium foil, and a heat gun: But a heat gun is rather expensive, so I wanted to explore other alternatives. The candle + PTFE tubing method actually works quite well when you happen to melt it at the rig

Attiny85 timer programming using Timer1

This Arduino sketch uses Timer1 to drive the LED blinker: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 /* * Program ATTiny85 to blink LED connected to PB1 at 1s interval. * Assumes ATTiny85 is running at 1MHz internal clock speed. */ #include <avr/io.h> #include <avr/wdt.h> #include <avr/sleep.h> #include <avr/interrupt.h> bool timer1 = false , led = true ; // Interrupt service routine for timer1 ISR(TIMER1_COMPA_vect) { timer1 = true ; } void setup() { // Setup output pins pinMode( 1 , OUTPUT); digitalWrite( 1 , led); set_sleep_mode(SLEEP_MODE_IDLE); // Setup timer1 to interrupt every second TCCR1 = 0 ; // Stop timer TCNT1 = 0 ; // Zero timer GTCCR = _BV(PSR1); // Reset prescaler OCR1A = 243 ; // T = prescaler / 1MHz = 0.004096s; OCR1A = (1s/T) - 1 = 243 OCR1C = 243 ; // Set to same value to reset timer1 to