Skip to main content

RBX - Robotics Brick Extension

RBX is a project that I have been working on for some time now. It is a robotics kit designed for young tinkerers. It consists of a set of Lego-compatible "bricks" made with common components, such as LED, pushbutton, servo, motor etc. The brick housings are printed using a 3D printer. The components are hooked up to a microcontroller via standardized "ports". Programming is done via a variant of Javascript (a port of Duktape) on a browser-based IDE.


I started the project because I found that block-based programming environment such as Lego Mindstorm are a little too simple for older kids (8 - 12 year old), yet the long compile-run cycle of Arduino is not suitable for tinkering and quick prototyping. Something that sits in the middle is needed.

On the hardware side, one of the first obstacles for a child trying to break into microcontroller programming is hooking up the desired circuitry on a breadboard. Anything beyond the the introductory "Hello World" LED example requires a ton of wiring. If servos or motors are involved, a separate power rail is required, which makes things even more complicated.

RBX uses various JST connectors to connect to the microcontroller (which is based on the ESP32 dev board). These are called "ports", which maps to the microcontroller pins. The ports come in 2, 3 and 4-pin variety, and each port has a unique identifier. 


In this way, hooking up components becomes a plug-and-play affair. Since the connectors need to be matching and oriented correctly, this makes it less likely for components to be hooked up the wrong way.

Programming is done via a browser-based IDE served directly from the microcontroller. Once the microcontroller is powered on, the user is able to connect via a web browser and start entering and running JavaScript code immediately.


The entire project can be found on Github. It uses FreeCAD for designing the 3D housing, KiCAD for designing the microcontroller PCBs, and Platformio for coding the firmware.


Comments

Popular posts from this blog

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to

Attiny85 timer programming using Timer1

This Arduino sketch uses Timer1 to drive the LED blinker: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 /* * Program ATTiny85 to blink LED connected to PB1 at 1s interval. * Assumes ATTiny85 is running at 1MHz internal clock speed. */ #include <avr/io.h> #include <avr/wdt.h> #include <avr/sleep.h> #include <avr/interrupt.h> bool timer1 = false , led = true ; // Interrupt service routine for timer1 ISR(TIMER1_COMPA_vect) { timer1 = true ; } void setup() { // Setup output pins pinMode( 1 , OUTPUT); digitalWrite( 1 , led); set_sleep_mode(SLEEP_MODE_IDLE); // Setup timer1 to interrupt every second TCCR1 = 0 ; // Stop timer TCNT1 = 0 ; // Zero timer GTCCR = _BV(PSR1); // Reset prescaler OCR1A = 243 ; // T = prescaler / 1MHz = 0.004096s; OCR1A = (1s/T) - 1 = 243 OCR1C = 243 ; // Set to same value to reset timer1 to

Hacking an analog clock to sync with NTP - Part 5

This is how it looks after I have put everything together. The Arduino sketch is available here . The 2 jumper wires soldered to the clock mechanism are connected to pins D0 and D1 on the ESP-12 (in any order). When the device first boots up, it presents an access point which can be connected to via the PC or smartphone. Once connected, the captive portal redirects the web browser to the configuration page:     A custom field has been added to the WiFi configuration page to enter the current clock time in HHMMSS format. Try to set the clock time to as close to the current time as possible using the radial dial at the back of the clock so the clock will have less work to do catching up. In the config page, the HTML5 Geolocation API is also used to obtain your current location (so if your web browser asks if you would like to share your location, answer "yes"). This is then passed to the Google Time Zone API to obtain the time and DST offset of your time z