Skip to main content

Sweeping Analog Clock Analysis

The subject of this analysis is the $2 Ikea Stomma wall clock. Unlike the Rusch wall clock that had been the object of my experimentation all along, this clock uses a sweeping clock mechanism, which means the second hand appears to move continuously instead of every second. This also means it is quieter and does not produce the familiar tick-tock sound.

Note: Both clocks appear to have been discontinued at the time of writing. There is only one $2 clock on sale at their website now, which is the Tromma clock. I don't particularly like this clock, because the second hand is missing, which makes it difficult to tell if the clock is working at any instant.

The hacking process of the Stomma clock is quite similar to that of the Rusch clock, so no suprises there. 

Remove front plastic cover

Remove hour, minute and second hands

Remove clock mechanism

Open up clock mechanism. As before, keep the spindle side up helps keep the gear formation in one piece.

Solder 2 wires to the solder points where the thin coil wires is connected to the circuit board. I am using a 2-pin JST connector here.

Reassemble the clock mechanism. As before, I use the soldering iron to create a small hole at the side so that the wires can exit.

I inserted a AA battery into the clock mechanism and hooked up the wires that were just installed to a logic analyzer to check out the signal produced.

So basically, for each second, 16 pulses (each 32ms long) are produced, 8 pulses for each tick pin. They alternate at 62.5ms intervals (62.5ms x 16 = 1 second). So I think there is an extra 1/16 gear added to the clock mechanism, and each pulse moves the second hand by 1/16 of a second. However, I suspect the trade-off is higher power draw, because the pulse width is similar in the 2 mechanisms, so the power draw should be 16x for the sweeping mechanism.

To test this out, I connected the clock to the ESPCLOCK3 circuitry, and wrote a simple ATtiny85 sketch to drive the clock. The observations are as follows:
  • In my test, the power draw is about 10x when driving the sweeping clock mechanism. 
  • The pulse width cannot be lower than 32ms if the clock is to be driven reliably.
  • However, the rest time between pulses can be as low as 8ms (versus the current 62.5ms - 32ms = 30.5ms). This means the maximum rate at which I can fastforward the clock is about 150% (62.5ms / 40ms). In contrast, the maximum rate for a non-sweeping clock mechanism is about a whooping 800% (1sec / 120ms).
  • The stay-in-place ticking trick (by pulsing the same tickpin repeatedly) does not work with the sweeping mechanism.
So it would not be practical to drive a sweeping clock using ESPCLOCK3 primarily because the fastforward rate is too low. If we are a few hours off, it will take forever to catch up. Also, due to the higher 10x power draw, the clock will last only weeks instead of months.

Comments

  1. It would be interesting if swapping the Tick pins would result in the hand moving backwards.
    If so, then this type of movement would be a great choice for Vetinari clock.

    ReplyDelete
    Replies
    1. I don't think that's possible. The order of the tick pins are irrelevant. What matters are the timing of the pulses. Swapping the pins will have no effect on the direction of travel.

      Delete

Post a Comment

Popular posts from this blog

Adding "Stereo Mixer" to Windows 7 with Conexant sound card

This procedure worked for my laptop (Thinkpad E530) with a Conexant 20671 sound card, but I suspect it will work for other sound cards in the Conexant family. I was playing with CamStudio to do a video capture of a Flash-based cartoon so that I can put it on the WDTV media player and play it on the big screen in the living room for my kids. The video capture worked brilliantly, but to do a sound capture, I needed to do some hacking. Apparently, there was this recording device called "Stereo Mixer" that was pretty standard in the Windows XP days. This allowed you to capture whatever was played to the speaker in all its digital glory. Then under pressure from various organizations on the dark side of the force, Microsoft and soundcard makers starting disabling this wonderful feature from Windows Vista onwards. So after much Googling around, I found out that for most sound cards, the hardware feature is still there, just not enabled on the software side. Unfortunately, to

Hacking a USB-C to slim tip adapter cable to charge the Thinkpad T450s

This hack is inspired by this post . A year ago, I bought an adapter cable for my wife's Thinkpad X1 Carbon (2nd Gen) that allows her to power her laptop with a 60W-capable portable battery (20V x 3A). A USB-C cable goes from the battery into the adapter, which converts it to the slim tip output required by the laptop. Everything works out of the box, so I didn't give much thought about it. Recently, I decided to buy a similar cable for my Thinkpad T450s. I know technically it should work because the T450s can go as low as 45W (20V x 2.25A) in terms of charging (though I have the 65W charger - 20V x 3.25A).  I went with another adapter cable because it was cheaper and also I prefer the single cable design. So imagine my surprise when the cable came and I plugged it into my laptop and it didn't work! The power manager just cycle in and out of charging mode before giving up with an error message saying there is not enough power. After much research and reading the Thinkwiki

Using Google Dashboard to manage your Android device backup

I used to use AppBrain/Fast Web Install to keep track of which apps I have installed on my phone, and to make it easier to reinstall those apps when the phone gets wiped or replaced. But AppBrain had been going down the tubes, and Fast Web Install had always been a hit-and-miss affair. Android's own "backup to the cloud" system had previously been even more unusable. There isn't a place where you can see what has been backed up. And when you setup a new phone with your Google account, you just have to wait and pray that your favorite apps will be restored to the phone. Typically all the stars have to be aligned just right for this to happen. More often than not, after waiting for an hour or so and nothing happens, you just curse under your breath and proceed to install your favorites apps manually via the Play Store. But I just looked again recently and was pleasantly surprised that things are much more civilized now. Firstly there is a place now where you can loo